Effective integration of Lie type algebras

Bruno VALLETTE

Université Sorbonne Paris Nord

Conference in Memory of Yuri Manin

August 14, 2025

Table of contents

- 1 Yuri I. Manin
- Strong Lie algebras
- Weak Lie algebras

Table of contents

- 1 Yuri I. Manin
- Strong Lie algebras
- Weak Lie algebras

Books

- Yuri I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, volume 47, American Mathematical Society Colloquium Publications, 1999.
- Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, Springer Monographs in Mathematics, 2003.
- Alexei I. Kostrikin and Youri I. Manin, Algèbre et géométrie linéaires, volume 36, Enseign. Math., Cassini, 2021.
- ...
- Yuri I. Manin, Mathematics as metaphor: Selected essays of Yuri. I. Manin, with foreword by Freeman J. Dyson, American Mathematical Society, 2007.
- Yuri I. Manin, Les mathématiques comme métaphore. Essais choisis. Les Belles Lettres (Paris), 2021.

Mathematics as metaphor

"The revival of operad theory [...] seems to be a major recent event in the somewhat backwaterish domain of general algebra."

Operads

"GENERAL ALGEBRA":

- generating operations: binary product * or skew-symm. bracket [,].
- relations: associativity $(a \star b) \star c = a \star (b \star c)$ or Jacobi identity [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

PROBLEM:

How many different iterations, other structural relations? ↔ free algebra

- ASSOCIATIVE: $a^{*n} = a * a * \cdots * a$,
- $\mathsf{Ass}(x,y)\cong \mathbb{K}\langle\langle x,y\rangle\rangle$.

• LIE: $[[a, b], c] \neq [a, [b, c]], ...$

$$Lie(x, y) \cong \cdots$$

PARADIGM SHIFT: encode the entire set of operations with compositions.

Definition (Operad)

- OPERATIONS: $\{\mathcal{P}(n)\}_{n\in\mathbb{N}}$ of \mathbb{S}_n -modules
- COMPOSITIONS: $\circ_i : \mathcal{P}(n) \otimes \mathcal{P}(m) \to \mathcal{P}(n+m-1)$

Operads

EXAMPLE: Little discs operad D²

Theorem (May, 1972)

$$Y \sim \Omega^2 X := \textit{Top}_*(S^2, X) \Longleftrightarrow Y : \textit{D}^2$$
-algebra

RENAISSANCE OF OPERADS (EARLY 1990'S):

 $\textbf{Topology} \rightarrow \textbf{Algebra}, \textbf{Geometry}, \textbf{Mathematical Physics}, \textbf{etc.}$

DELIGNE-MUMFORD $\overline{\mathcal{M}}_{g,n}$:

Definition (Kontsevich-Manin, 1994)

 $H_{\bullet}(\overline{\mathcal{M}}_{g,n})$ -algebra : Cohomological Field Theories (CohFT)

Renaissance of operads

- \rightarrow structure of the Gromov–Witten invariants on $H^{\bullet}(X)$.
 - Maxim Kontsevich and Yuri I. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys., 164(3):525–562, 1994.
 - Maxim Kontsevich and Yuri I. Manin, Quantum cohomology of a product, with an appendix by Ralf Kaufmann, Invent. Math., 124, 1996.
 - Mikhail Kapranov and Yuri I. Manin, Modules and Morita theorem for operads, Amer. J. Math., 123(5):811–838, 2001.

Proposition

$$\mathcal{P}$$
 operad $\Rightarrow \left(\prod_{n \in \mathbb{N}} \mathcal{P}(n), \star = \sum_{i} \circ_{i}\right)$ is a pre-Lie algebra: $(a \star b) \star c - a \star (b \star c) = (a \star c) \star b - a \star (c \star b).$

associative alg. \subset pre-Lie alg. $\stackrel{-}{\rightarrow}$ Lie alg.

Generalised operads

type of operations	type of Operads	examples of representations
	associative algebras	Steenrod squares, multicomplexes,
	operads	associative alg., Lie alg., pre-Lie alg., Poisson alg., Batalin–Vilkovisky alg.,
	modular operads	CoFTs, Frobenius algebras,
	properads	associative bialg., Frobenius bialg.,

 Dennis V. Borisov and Yuri I. Manin. Generalized operads and their inner cohomomorphisms, in Geometry and dynamics of groups and spaces, volume 265, Progr. Math., p. 247–308. Birkhäuser, 2008.

Quadratic data

THEORY OF "PRESENTATIONS" for (associative, commutative, Lie) algebras: quadratic data (V, R) s.t. $R \subset V^{\otimes 2} \Rightarrow A = T(V)/(R)$.

- \rightarrow category structure, monoidal products (black and white), etc.
 - Yuri I. Manin, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier (Grenoble), 37(4):191–205, 1987.
 - Yuri I. Manin, Quantum groups and noncommutative geometry, Université de Montréal Centre de Recherches Mathématiques, 1988.

MIX THE TWO APPROACHES: operadic structure on quadratic data.

• Yuri I. Manin and Bruno Vallette, *Monoidal structures on the categories of quadratic data*, Doc. Math., 25:1727–1786, 2020.

Theorem (Manin-V., 2020)

Drinfeld–Khono quadratic data forms the smallest sub-operad of the Kontsevich graph operad.

Table of contents

- 1 Yuri I. Manin
- Strong Lie algebras
- Weak Lie algebras

Lie theory

- ullet LIE THIRD THEOREM: Lie group $G \stackrel{\mathrm{T}_e}{\longrightarrow}$ Lie algebra $\mathfrak g$
- ullet DEFORMATION THEORY: differential graded Lie algebra $(\mathfrak{g},[\,,],\mathrm{d})$

Definition (Maurer-Cartan elements)

$$MC(\mathfrak{g}) := \left\{ \alpha \in \mathfrak{g}_{-1} \mid d\alpha + \frac{1}{2}[\alpha, \alpha] = 0 \right\}$$

ightarrow PHILOSOPHY: "any deformation problem over a field of characteristic 0 can be encoded by a dg Lie algebra."

structures of type
$$\mathcal P$$
 on a "space" $A \longleftrightarrow \mathrm{MC}(\mathfrak g_{\mathcal P,A})$ equivalence $\longleftrightarrow G$

Theorem (Pridham & Lurie, 2010)

equivalence of ∞ -categories: formal moduli problems $\stackrel{\cong}{\longleftrightarrow}$ dg Lie alg.

 \rightarrow characteristic p > 0 (Brantner–Mathew, 2019) , characteristic $p \geqslant 0$ overall operadic proof (Roca i Lucio–Le Grignou, 2023).

Deformation theory

 $\to \text{complete dg Lie algebra } \mathfrak{g} = \mathcal{F}_1 \, \mathfrak{g} \supset \mathcal{F}_2 \, \mathfrak{g} \supset \cdots \quad \text{s.t. } \mathfrak{g} \cong \varprojlim_k \mathfrak{g}/\mathcal{F}_k \mathfrak{g} \; .$

gauges: $\lambda \in \mathfrak{g}_0 \mapsto \text{vector fields: } -d\lambda + ad_\lambda \in \Gamma(TMC(\mathfrak{g}))$

Definition (Gauge equivalence)

$$\alpha \sim \beta \in \mathrm{MC}(\mathfrak{g})$$
: $\exists \lambda \in \mathfrak{g}_0$, $\gamma'(t) = \mathrm{ad}_{\lambda}(\gamma(t)) - \mathrm{d}\lambda$, $\gamma(0) = \alpha$, $\gamma(1) = \beta$.

SOLUTION:
$$\gamma(t) = \exp(t \operatorname{ad}_{\lambda}) \Rightarrow \beta = \exp(\operatorname{ad}_{\lambda})(\alpha) + \frac{\operatorname{id} - \exp(\operatorname{ad}_{\lambda})}{\operatorname{ad}_{\lambda}}(\operatorname{d}_{\lambda})$$
.

SPECIAL CASE: $[a,b] = a \star b - (-1)^{|a||b|} b \star a$, $(\mathfrak{g},\star,\mathrm{d})$ dg associative alg.

- Maurer–Cartan equation: $d\alpha + \alpha \star \alpha = 0$.
- Gauge group action: $\lambda \cdot \alpha = \exp(\operatorname{ad}_{\lambda})(\alpha) = \exp(\lambda) \star \alpha \star \exp(-\lambda)$.

Definition (Deformation gauge group)

Group-like elements: $\mathfrak{G} := (1 + \mathfrak{g}_0, \star, 1)$.

Baker-Campbell-Hausdorff formula

$$(\mathfrak{g}_0, \log(\exp\star\exp), 0) \xrightarrow[\log]{\exp} \mathfrak{G} = (1 + \mathfrak{g}_0, \star, 1)$$

Theorem (Baker-Campbell-Hausdorff, 1902-1906)

$$\begin{aligned} \mathrm{BCH}(x,y) &\coloneqq \log \left(\exp(x) . \exp(y) \right) \\ &= x + y + \frac{1}{2} [x,y] + \frac{1}{12} [x,[x,y]] + \frac{1}{12} [y,[x,y]] + \cdots \\ &\in \widehat{\mathsf{Lie}}(x,y) \subset \widehat{\mathsf{Ass}}(x,y) \; . \end{aligned}$$

Definition (Gauge group)

 \mathfrak{g} complete Lie algebra: $G := (\mathfrak{g}_0, \operatorname{BCH}, 0)$ topological group.

$$\begin{split} \text{BCH}(x,y)^{(\text{Dynkin},1947)} & \sum_{n \geq 1} \frac{(-1)^{n-1}}{n} \sum_{\substack{j=1 \ 1, \dots, n-1 \}}} \int_{i=\{1,\dots,n-1\}} \left(\frac{\operatorname{ad}_{x}^{\rho_{1}} \circ \operatorname{ad}_{y}^{q_{1}} \circ \cdots \circ \operatorname{ad}_{x}^{\rho_{n-1}} \circ \operatorname{ad}_{y}^{q_{n-1}}(x)}{(1+\sum_{i=1}^{n-1} \rho_{i} + q_{i}) \rho_{1}! q_{1}! \dots \rho_{n-1}! q_{n-1}!} + \\ & \sum_{\rho_{n} \geq 0} \frac{\operatorname{ad}_{x}^{\rho_{1}} \circ \operatorname{ad}_{y}^{q_{1}} \circ \cdots \circ \operatorname{ad}_{x}^{q_{n-1}} \circ \operatorname{ad}_{y}^{q_{n-1}} \circ \operatorname{ad}_{x}^{q_{n}}(y)}{(\rho_{n} + 1 + \sum_{i=1}^{n-1} \rho_{i} + q_{i}) \rho_{1}! q_{1}! \dots \rho_{n-1}! q_{n-1}! \rho_{n}!} \right). \end{split}$$

Deformation theory of \mathcal{P} -algebras

 \rightarrow Endomorphism operad: $\operatorname{End}_{\mathcal{A}} := (\{\operatorname{\mathsf{Hom}}(\mathcal{A}^{\otimes n}, \mathcal{A})\}, \{\circ_i\})$.

Definition (\mathcal{P} -algebra structure)

A representation of \mathcal{P} : a morphism of dg operads $\mathcal{P} \to \mathsf{End}_{A}$.

DEFORMATION THEORY OF \mathcal{P} -ALGEBRAS:

o Koszul resolution: $\mathcal{P}_{\infty}\coloneqq\Omega\mathcal{P}^{\scriptscriptstyle{\dagger}}\stackrel{\sim}{ o}\mathcal{P}$, with Koszul dual cooperad $\mathcal{P}^{\scriptscriptstyle{\dagger}}$.

$$\{\mathcal{P}_{\infty}\text{-alg. on }A\}\cong \operatorname{Hom}_{\mathsf{dg op.}}(\mathcal{P}_{\infty},\mathsf{End}_{A})\cong \operatorname{MC}\left(\underbrace{\operatorname{Hom}_{\mathbb{S}}(\mathcal{P}^{\mathsf{i}},\mathsf{End}_{A})}_{\mathsf{convolution operad}}\right)$$

 \Rightarrow Deformation theory of \mathcal{P} -alg.controlled by a complete dg pre-Lie alg.

associative alg. \subset pre-Lie alg. $\xrightarrow{-}$ Lie alg.

Pre-Lie exponential/logarithm maps

$$G = (\mathfrak{g}_0, \mathrm{BCH}, 0) \xrightarrow{?} \mathfrak{G} = (1 + \mathfrak{g}_0, ?, 1)$$

Definition (Pre-Lie exponential/logarithm maps)

•
$$\exp_{\star}(\lambda) := \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{(\cdots ((\lambda \star \lambda) \star \lambda) \cdots) \star \lambda}_{n \text{ times}}$$

•
$$\log_{\star}(1+\lambda) := \lambda - \frac{1}{2}\lambda \star \lambda + \frac{1}{4}\lambda \star (\lambda \star \lambda) + \frac{1}{12}(\lambda \star \lambda) \star \lambda + \cdots$$

Definition (Circle product)

$$\begin{array}{ll} (1+x) \circledcirc (1+y) := 1 + \sum_{n=0}^{\infty} \frac{1}{n!} \{x; \underbrace{y, \ldots, y} \} & \text{associative} \\ & \underbrace{symmetric\ braces:}_{\{x;\}} := x \\ & \{x;y_1\} := x \star y_1 \\ & \{x;y_1,y_2\} := \{\{x;y_1\};y_2\} - \{x;\{y_1;y_2\}\} = (x \star y_1) \star y_2 - x \star (y_1 \star y_2) \\ & \{x;y_1,...,y_n\} := \{\{x;y_1,...,y_{n-1}\};y_n\} - \sum_{i=1}^{n-1} \{x;y_1,...,y_{i-1},\{y_i;y_n\},y_{i+1},...,y_{n-1}\}. \end{array}$$

Integration of pre-Lie algebras

Proposition (Dotsenko-Shadrin-V., 2016)

Complete dg pre-Lie algebra $(\mathfrak{g},\star,\mathrm{d})$:

•
$$G = (\mathfrak{g}_0, \operatorname{BCH}, 0) \xrightarrow{\stackrel{\exp_+}{\cong}} \mathfrak{G} := (1 + \mathfrak{g}_0, \odot, 1)$$

Action of the deformation gauge group & on MC(g):

$$(1+\lambda)\cdot\alpha=((1+\lambda)\star\alpha)\odot(1+\lambda)^{-1}-\mathrm{d}\lambda\odot(1+\lambda)^{-1}.$$

- → DELIGNE GROUPOID:
 - Objects: \mathcal{P}_{∞} -algebras,
 - Morphisms: ∞ -morphisms with 1st component = id.

Applications

Theorem (Campos-Petersen-Robert-Nicoud-Wierstra, 2024)

- The universal enveloping algebra functor \mathfrak{U} :
 nilpotent Lie algebras \to associative algebras
 $\mathfrak{g} \mapsto \mathfrak{U}(\mathfrak{g}) := \mathsf{T}(\mathfrak{g})/(x \otimes y y \otimes x [x,y])$ detects isomorphisms.
- The singular cochains algebra $(C^{\bullet}_{\text{sing}}(X,\mathbb{Q}),\cup,\mathrm{d})$ encodes faithfully the rational homotopy type of X.

Theorem (Dotsenko-Shadrin-Vaintrob-V., 2024)

- Notion of quantum $CohFT_{\infty}$.
- Universal symmetry group.
- contains Grothendieck–Teichmüller GRT₁ and Givental group.

Limits of "general algebra"

DEFORMATION GAUGE GROUP ACTION:

$$((1+\lambda)\star\alpha)\otimes(1+\lambda)^{-1}-\mathrm{d}\lambda\otimes(1+\lambda)^{-1}$$

 PARADIGM SHIFT: free pre-Lie algebra given by rooted trees [Chapoton-Livernet, 2001]

$$(1-\lambda)^{-1} = \sum_{\tau \in \mathsf{RT}} \frac{1}{|\mathrm{Aut}\, \tau|} \, \tau(\lambda) \,, \quad \mathsf{where} \, \tau(\lambda) = \lambda$$

- \mathcal{P} properad $\Rightarrow \left(\prod_{n,m\in\mathbb{N}}\mathcal{P}(m,n),\star=\sum_{i,j}\circ_i^j\right)$ Lie-admissible algebra: $[a,b]=a\star b-b\star a$ satisfies the Jacobi identity.
 - \rightarrow Its iterations do not recover "all" the operations.

Lie-graph algebras

Definition (Operad Lie-graph)

top-to-bottom directed simple graphs (dsGra) with compositions:

→ different from the Kontsevich graph operad: creates edges.

Deformation theory of \mathcal{P} -bialgebras

Proposition (Campos-V., 2025)

- \mathcal{P} properad $\Rightarrow \left(\prod_{n,m\in\mathbb{N}} \mathcal{P}(m,n), \{\star_{\gamma}\}_{\gamma\in\mathsf{dsGra}}\right)$ is a Lie-graph algebra s.t. $\star_{\frac{1}{|2|}} = \star$ is the Lie-admissible product.
- The operad Lie-graph is not finitely generated.

DEFORMATION THEORY OF \mathcal{P} -BIALGEBRAS: representations $\mathcal{P} \to \mathsf{End}_A$ encoded by the complete dg Lie-graph algebra $\mathfrak{g}_{\mathcal{P},A} = \mathsf{Hom}_{\mathbb{S}}\left(\mathcal{P}^i,\mathsf{End}_A\right)$,

Maurer–Cartan equation $d\alpha + \alpha \star \alpha = 0$.

associative alg. \subset pre-Lie alg. \subset Lie-graph alg. $\stackrel{-}{\rightarrow}$ Lie alg.

Lie-graph exponential/logarithm maps

Definition (Lie-graph exponential/logarithm maps)

$$\bullet \ \exp_{\gamma}(\lambda) \ = \ 1 \ + \ \sum_{\gamma \in \mathsf{dsGra}} \frac{\ell_{\gamma}}{|\gamma|!} \, \gamma(\lambda) = \ 1 \ + \ \lambda \ + \ \frac{1}{2} \prod_{\lambda}^{\lambda} \ + \ \frac{1}{6} \prod_{\lambda}^{\lambda} \ + \ \frac{1}{6} \prod_{\lambda}^{\lambda} \ + \ \frac{1}{6} \prod_{\lambda}^{\lambda} \prod_{\lambda}^{\lambda} \prod_{\lambda}^{\lambda} \prod_{\lambda}^{\lambda} \prod_{\lambda}^{\lambda} \ + \ \frac{1}{6} \prod_{\lambda}^{\lambda} \prod$$

$$\frac{1}{6} \begin{array}{c} \lambda & \lambda \\ \lambda \end{array} + \begin{array}{c} \frac{1}{6} \begin{array}{c} \lambda \\ \lambda \end{array} + \begin{array}{c} \frac{1}{6} \begin{array}{c} \lambda \\ \lambda \end{array} + \begin{array}{c} \frac{1}{8} \begin{array}{c} \lambda \\ \lambda \end{array} + \begin{array}{c} \frac{1}{24} \begin{array}{c} \lambda \\ \lambda \end{array} + \cdots$$

•
$$\log_{\gamma}(1+\lambda) =$$

Integration of Lie-graph algebras

Proposition (Campos-V., 2025)

Complete dg Lie-graph algebra $(\mathfrak{g}, \{\star_{\gamma}\}_{\gamma \in \mathsf{dsGra}}, \mathrm{d})$:

$$G = (\mathfrak{g}_0, \operatorname{BCH}, 0) \xrightarrow{\stackrel{\exp_{\gamma}}{\cong}} \mathfrak{G} := (1 + \mathfrak{g}_0, \odot, 1) , \text{ where }$$

$$(1 + x) \odot (1 + y) = 1 + \sum_{\gamma \in 2 \text{-level dsGra}} \frac{1}{|\operatorname{Aut}(\gamma)|} \gamma(x, y) =$$

$$1 + |\overline{x}| + |\overline{y}| + \frac{1}{|x|} + \frac{1}{2} |\overline{y}| |\overline{y}| + \frac{1}{4} |\overline{y}| |\overline{y}| + \cdots$$

• Action of the deformation gauge group $\mathfrak G$ on $\mathrm{MC}(\mathfrak g)$:

$$(1+\lambda) \cdot \alpha = (1+\lambda) \stackrel{\alpha}{\bowtie} (1+\lambda)^{-1} - (1+\lambda; \mathrm{d}\lambda) \odot (1+\lambda)^{-1} , \text{ where }$$

$$(1+x) \stackrel{\alpha}{\bowtie} (1+y) = \sum_{\gamma \in \bowtie -\mathrm{dsGra}} \frac{1}{|\mathrm{Aut}(\gamma)|} \gamma(x, \alpha, y) =$$

$$\alpha + \frac{\alpha}{x} + \frac{y}{\alpha} + \frac{1}{2} \underbrace{\frac{\alpha}{x}}_{x} + \frac{1}{2} \underbrace{\frac{y}{y}}_{x} + \frac{y}{\alpha} +$$

Applications

- ightarrow DELIGNE GROUPOID:
 - Objects: \mathcal{P}_{∞} -bigebras,
 - Morphisms: ∞ -morphisms with 1st component = id .

Deformation gauge group $(1+\text{Hom}_{\mathbb{S}}(\mathcal{P}^i,\text{End}_A)_0,\odot,1)$: any characteristic.

Theorem (Emprin, 2024)

ullet complete formality classes for dg $\mathcal P$ -bialgebras (after Kaledin)

$$(A, \alpha) \xrightarrow{\sim} \cdot \xrightarrow{\sim} \cdot \xrightarrow{\sim} (H(A), \bar{\alpha})$$

descent property, "purity implies formality" (automorphism lift), etc.

Theorem (Emprin–Takeda, 2025)

- Intrinsic rational (co)formality of spheres, i.e. $C_*(\Omega S^n, \mathbb{Q})$, as pre-Calabi–Yau (bi)algebras with vanishing copairing: includes Poincaré duality.
- Not true in characteristic 2.

Table of contents

- 1 Yuri I. Manin
- Strong Lie algebras
- Weak Lie algebras

L_{∞} -algebras

• DEFORMATION THEORY OF ∞ -MORPHISMS OF \mathcal{P}_{∞} -(BI)ALGEBRAS: encoded by \mathbf{L}_{∞} -algebras, i.e. "weak Lie algebras".

Definition (L_{∞} -algebra)

 $(\mathfrak{g}, d, \{\ell_m\}_{m\geqslant 2})$: skew-symmetric operations ℓ_m : $A^{\wedge m} \rightarrow A$, $|\ell_m| = m-2$, s.t.

$$\partial \left(\ell_m\right) = \operatorname{d} \circ \ell_m - (-1)^m \ell_m \circ \operatorname{d}_{A^{\wedge m}} = \sum_{\substack{p+q=m\\2\leqslant p,q\leqslant m}} \pm \sum_{\sigma \in \operatorname{Sh}_{p,q}^{-1}} (\ell_{p+1} \circ_1 \ell_q)^\sigma \;.$$

- MAURER-CARTAN EQUATION: $\mathrm{d}\alpha + \sum_{m \geq 2} \frac{1}{m!} \ell_m(\alpha,\ldots,\alpha) = \mathbf{0}$.
- GAUGE EQUIVALENCE: gauges: $\lambda \in \mathfrak{g}_0 \mapsto \text{vector fields } \alpha \mapsto \sum_{m\geqslant 1} \frac{1}{(m-1)!} \ell_m(\alpha, \cdots, \alpha, \lambda) \in \mathrm{T}_\alpha \mathrm{MC}(\mathfrak{g})$.

∞ -groupoids

gauge equivalence (tree-wise formula) $\stackrel{?}{\leftarrow}$ "group up to homotopy" action HEURISTIC: ∞ -groupoid \leftrightarrow topological space \leftrightarrow Kan complex

Definition (∞ -groupoid)

A Kan complex, i.e. a simplicial set X_{\bullet} s.t.

$$\left\{\begin{array}{c} \Lambda_k^n \longrightarrow X_{\bullet} \\ \downarrow \\ \Delta^n \end{array}\right\} \neq \emptyset$$

Integration of L_{∞} -algebras

complete L_{∞} -algebras $\stackrel{?}{\longrightarrow} \infty$ -groupoids

Definition (Sullivan algebra)

Simplicial dg commutative algebra of polynomial differential forms on

$$|\Delta^n|$$
: $\Omega_{\bullet} = \{\Omega^*(\Delta^n)\}_{n \in \mathbb{N}}$

Theorem (Hinich, 1997)

$$\mathrm{MC}_{\bullet}(\mathfrak{g}) \coloneqq \mathrm{MC}\left(\mathfrak{g} \mathbin{\widehat{\otimes}} \Omega_{\bullet}\right) \infty$$
-groupoid s.t. $\mathrm{MC}_{0}(\mathfrak{g}) \cong \mathrm{MC}(\mathfrak{g})$.

PROBLEM: $MC_1(\mathfrak{g}) \supseteq gauges$

SOLUTION: consider the simplicial Dupont contraction

$$h_{\bullet} \bigcap^{\bullet} \Omega^*(\Delta^{\bullet}) \stackrel{\rho_{\bullet}}{\longleftarrow} C^*(\Delta^{\bullet})$$

Theorem (Getzler, 2009)

$$\gamma_{\bullet}(\mathfrak{g}) \coloneqq \mathrm{MC}_{\bullet}(\mathfrak{g}) \cap \ker h_{\bullet} \sim \mathrm{MC}_{\bullet}(\mathfrak{g}) \ \infty\text{-}\mathit{groupoid} \ \mathit{s.t.} \ \gamma_{1}(\mathfrak{g}) = \mathit{gauges}$$

Effective integration of L_{∞} -algebras

ISSUE: not explicit ...

IDEA: transfer the simplicial commutative algebra structure from $\Omega^*(\Delta^{\bullet})$ up to homotopy on $C^*(\Delta^{\bullet})$ and consider its linear dual (finite dim.).

Definition (Universal Maurer–Cartan L_{∞} -algebra)

The cosimplicial complete L_{∞} -algebra: $\mathfrak{mc}^{\bullet}:=\left(\widehat{L_{\infty}}\left(C_{*}(\Delta^{\bullet})\right),d\right)$.

Definition (Integration functor)

$$L = \operatorname{Lan}_Y \mathfrak{mc}^{\bullet} \, : \, \mathsf{sSet} \, \ \, \ \, \underline{\hspace{1cm}} \, \ \, L_{\infty}\text{-alg.} \, : \, \mathrm{R}(\mathfrak{g}) \coloneqq \mathsf{Hom}_{\mathrm{L}_{\infty}\text{-alg}} \left(\mathfrak{mc}^{\bullet}, \mathfrak{g}\right)$$

Theorem (Robert-Nicoud-V., '20)

$$\gamma(\mathfrak{g})\cong\mathrm{R}(\mathfrak{g}) \qquad \left\{ egin{array}{ll} \Lambda^n_k & \longrightarrow & \mathrm{R}(\mathfrak{g}) \\ \downarrow & & \swarrow & \\ \Delta^n & \end{array}
ight\}\cong \mathfrak{g}_n
ightarrow 0$$

 \Rightarrow algebraic ∞ -groupoid [Nikolaus, 2011]: property \rightarrow structure

Higher Baker-Campbell-Hausdorff products

Definition (Higher Baker–Campbell–Hausdorff products)

The value at the missing (n-1)-simplex of the evaluation of the top dimensional cell of a horn in $R(\mathfrak{g})$ by 0:

$$\mathsf{Hom}_{\mathsf{sSet}}\left(\Lambda_{k}^{n}, \mathrm{R}(\mathfrak{g})\right) \ \longrightarrow \ \mathfrak{g}_{n-1} \ , \quad x \ \longmapsto \ \Gamma_{k}^{n}(x)$$

EXAMPLE [Bandiera, 2014]:

$$\bigvee^{y}$$
 0 \in MC(\mathfrak{g}), $x, y \in \mathfrak{g}_{0}$.

Proposition (Robert-Nicoud-V., 2020)

$$\Gamma_{k}^{n}(x) = \sum_{\substack{\tau \in \mathsf{PaPRT} \\ \chi \in \mathsf{Lab}^{[n],k}(\tau)}} \prod_{\substack{\beta \text{ block of } \tau \\ \lambda_{[n]}^{\beta(\chi)} \neq 0}} \frac{(-1)^{k}}{\lambda_{[n]}^{\beta(\chi)}[\beta]!} \ell_{\tau} \left(x_{\chi(1)}, \dots, x_{\chi(p)}; \sum_{l \neq k} (-1)^{k+l+1} x_{\widehat{l}} \right)$$

Applications

 \Rightarrow homotopy invariance (R(quasi-isomorphism)=homotopy equivalence), Berglund's Hurewicz theorem $(\pi_n(R(\mathfrak{g}),\alpha)\cong H_n(\mathfrak{g}^{\alpha}))$, etc.

Theorem (Robert-Nicoud-V., 2020)

- X_{\bullet} pointed connected finite type simplicial set: $\mathrm{RL}(X_{\bullet})$ homotopy equivalent to Bousfield–Kan \mathbb{Q} -completion of X_{\bullet}
- \rightarrow [Buijs–Felix–Murillo–Tanré, 2020] Lie alg. case: $L_{\infty}\text{-alg.}$ are simpler.

Lie algebras $\subset L_{\infty}\text{-algebras}\subset \text{absolute }\mathrm{EL}_{\infty}\text{-algebras}$

 \rightarrow "Koszul dual" to $\mathrm{E}_{\infty}\text{-alg.},$ point-set model for spectral partition Lie alg.

Theorem (Roca i Lucio, 2024)

X. a pointed connected finite type simplicial set

 $\widetilde{\mathrm{RL}}(X_ullet)$ homotopy equivalent to Bousfield–Kan \mathbb{F}_p -completion of X_ullet

Poetry and mathematics ...

"Là, tout n'est qu'ordre et beauté, Luxe, calme et volupté."

Charles Baudelaire, L'invitation au voyage.

"What binds us to space-time is our rest mass, which prevents us from flying at the speed of light, when time stops and space loses meaning. In a world of light there are neither points nor moments of time; beings woven from light would live "nowhere" and "nowhen"; only poetry and mathematics are capable of speaking meaningfully about such things."

Yuri. I. Manin, Mathematics as metaphor.

THANK YOU FOR YOUR ATTENTION!